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Outline

è   Problem Overview

• Bistatic Algorithms - Description and Analysis

• Summary and Future Work
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Problem Overview

• Bistatic geometry involves separate transmit and receive platforms
– Platforms are moving independently

• Receive only platform for surveillance or strike
– Extend coverage area
– Improve target localization
– No transmitter on receive platform

 Reduce size, weight, power
 Improve stealthiness

Receive Platform

Satellite Illuminator
Altitude: 800 km
Speed: 7460 m/s 

Altitude: 6 - 16 km
Speed: 180 m/s 

Aircraft

E-2C Hawkeye

Standoff Illuminator
Altitude: 10 km
Speed: 180 m/s 

Case 2

Case 1
^a^-^ 
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Challenges for Bistatic Operation

• Benefits of bistatic operation come at a price
– Azimuth / Doppler structure of clutter interference varies with range

• Challenge is to find training strategies to estimate covariance R

Rx/Tx

Monostatic Doppler Bistatic Doppler

Monostatic Clutter Ridges Bistatic Clutter Ridges
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• Covariance model is used to compare algorithms with
– large number of geometries
– coarse range sampling

• Modeling goal is to quickly survey algorithm performance
– simplified scattering model

• Time series model is used to compare algorithms with
– small number of geometries
– fine scale range sampling

• Designed to examine “real world” effects on algorithm performance

Algorithm Development Approach

Test ideas in idealized geometry
(Covariance analysis)

Test for robustness in more
realistic situations 

(Training strategies / simulated data )

Identify reduced number of
promising approaches

Identify modifications as needed
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Outline

• Problem Overview

• Bistatic Algorithms - Description and Analysis

è Algorithm description

– “Standard” 2 - bin Post - Doppler

– 2 - bin Post - Doppler with Derivative Based Updating (DBU)

– Uses only radar data but doubles the degrees of freedom (DOF’s)

– Requires increased sample support

– 2 - bin Post - Doppler with High Order Doppler Warping (HODW)

– Uses knowledge of bistatic clutter ridge

– Receiver must know position and velocity of transmitter

– Algorithm performance

• Summary and Future Work
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2 - Bin Post - Doppler Algorithm

• Two-Bin nulling algorithm:
– Train on clutter in Doppler bin #’s 1 and 2 to null clutter at the target Doppler 

frequency

• Well established approach for monostatic STAP applications
– Typically assume range invariance and estimate covariance with range average

Doppler Frequency

Clutter
Doppler #1

Clutter
Doppler #2

Target
Doppler

Estimate 2Nx2N 
Covariance Matrix

N phase centers

Calculate target signature in 
each clutter doppler bin

Form adaptive 
weight vector

R v
-1R

V   (2Nx1)

W = 
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Derivative-Based Updating Algorithm

• Assumes weight vector varies linearly with range
– Effectiveness depends on accuracy of weight vector model

• Doubles the number of degrees of freedom (DOF) in the STAP 
problem
– Covariance matrix size is doubled
– Number of training samples required to estimate covariance is 

doubled

• Derivative-Base Updating Algorithm (DBU):
– Hayward (1996), Zatman & Kogon (2000 ASAP), Zatman (2001 ASAP)

Range
(Time)w(r   )

2

w(r) = w    +  r0

w(r )
1

dw

dr

Training Set
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• Assume optimal filter wk = w0 + k w’    ( at kth relative range gate)
• wk

H xk = w0
H xk + k w’ H xk = [ w0

H w’ H ] [ xk ; k xk ]
• Form sample set based on extended vector [ xk ; k xk ] to obtain 

extended covariance

Derivative Based Updating - Interpretation

Rest = ( 1 / N )
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High Order Doppler Warping (HODW)

• In each Doppler filter apply a range-dependent Doppler frequency shift
– Shift is different in each Doppler filter, at each range

 Original warping algorithm used same shift in each Doppler filter

– Interference structure nearly homogeneous in range for each output Doppler bin
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High-Order Doppler Warping
Bistatic Space to Air Example 

• Frequency shift is derived from the clutter ridge geometry
– Clutter ridge multiplicity (front lobe / back lobe, aliasing) resolved by 

choosing highest transmit power branch

• “High Order” Warping has made the clutter interference range 
invariant” on a bin by bin basis  
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Outline

• Problem Overview

• Bistatic Algorithms - Description and Analysis

– Algorithm description

– “Standard” 2-bin Post - Doppler

– Derivative Based Updating

– High Order Doppler Warping

è Algorithm performance

• Summary and Future Work
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Measuring Performance

• Standard measure of performance is SINR Loss
• For signal element response vector v ( | v |2 = 1 ) and filter w :

– SINR = |s|2 | wH v |2 / ( wH R w )
 where R is the true “interference + noise” covariance matrix < x xH >

and s is the signal amplitude

• For uncorrelated noise (unit power) < n nH > = I and with w = v
– SNR = |s|2 | vH v |2 / ( vH v ) = | s |2

• For correlated noise < n nH > = N and with w = N -1 v
– SNR = |s|2 | vH N -1  v |2 / ( vH N -1 v ) = | s |2 v H N -1 v 

• Ratio is SINR Loss = | wH v |2 / ( (wH R w ) (v H N -1 v ) )   ≤≤ 1
– Optimal w = R-1 v and max( SINR Loss ) = vH R-1 v / (v H N -1 v ) 
– In practice use estimated Rest and w = Rest

-1 v
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Algorithm Performance - Bistatic Air to Air
(Case 1 )

Covariance Analysis
Covariance average over 20 km

Time Series Analysis
3 x #DOF Sample average (10 km)

(20 km for DBU)
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• Standard Sample Covariance Matrix approach significantly degraded
– Only moderate variation of clutter interference structure across training region
– Standard approach preserves  60% of useable Doppler space (UDSF)

• Both DBU and HODW methods yield near - ideal performance
– DBU preserves 80% UDSF, HODW 85%, Ideal 85% 
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Case 2: Space to Air Geometry
Transmitter

Altitude 800 km
Speed 7540 m/s
Heading North
Freq. 5.2 GHz
Bandwidth 12 MHz
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Algorithm Performance - Bistatic Space to Air
Case 2

• Standard Sample Covariance Matrix approach performs poorly
– Very rapid variation of clutter interference structure across training region
– Much worse performance than in air to air case
– UDSF degrades from 45% with 4 km training to 25% with 6km training 

• Both DBU and HODW methods again yield near - ideal performance
– UDSF is 80% for both DBU and HODW, UDSF for ideal is 90%

Covariance Analysis
Covariance average over 6 km

Time Series Analysis
Sample average over 4 km

(8 km for DBU)
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Bistatic STAP Algorithms - Recap 

• Standard training approach for STAP works poorly
– Poor choice for non - stationary interference

• DBU approach
– Advantages

 No knowledge of transmitter position and velocity required

– Disadvantages
 Doubles the STAP degrees of freedom

 Doubles the number of training samples required
 Increases cost of weight computation by factor of 8

 No significant impact on weight application computation

• HODW Approach
– Advantages

 No increase in degrees of freedom required
 Fully adaptive in spatial dimension

– Disadvantages
 Requires knowledge of transmitter position and velocity
 Increased complexity of Doppler filtering

 FFT techniques may not be possible
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Outline

• Problem Overview

• Bistatic Algorithms - Description and Analysis 

èSummary and Future Work
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Summary

• Bistatic clutter interference suppression poses new challenges
– Clutter interference exhibits strongly range dependent structure

• Doppler warping technique generalized
– “High Order Doppler Warping” algorithm

• 2-bin Post- Doppler Algorithms examined both with covariance 
analysis and more realistic direct time series analysis

• Preliminary assessments of selected algorithms in Air - to - Air 
and Space - to - Air bistatic scenarios presented

 All algorithms rely on sample average over range to estimate clutter 
interference covariance

– Standard training - POOR
 (no attempt to address range variation)

– Derivative Based Updating (DBU) - GOOD
 Requires doubling problem dimensionality

– High Order Doppler Warping (HODW) - GOOD
 Requires knowledge of transmitter position and velocity
 Doppler filter implementation more complex
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Future Directions

• Extend analyses to other engagement  geometries

• Assess impact of imperfections

– Array element calibration uncertainties

 Both DBU and HODW are fully data adaptive in the spatial dimension

 No deterministic spatial transformations

 Anticipate impact similar to that on monostatic STAP

– Engagement geometry uncertainties

 HODW requires a priori knowledge of transmitter position and velocity

• Develop computational complexity estimates for HODW

– Determine optimal implementation strategy 
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